Apigenin blocks IKKα activation and suppresses prostate cancer progression

نویسندگان

  • Sanjeev Shukla
  • Rajnee Kanwal
  • Eswar Shankar
  • Manish Datt
  • Mark R. Chance
  • Pingfu Fu
  • Gregory T. MacLennan
  • Sanjay Gupta
چکیده

IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism.

Prostate cancer mortality is primarily attributed to metastatic rather than primary, organ-confined disease. Acquiring a motile and invasive phenotype is an important step in development of tumors and ultimately metastasis. This step involves remodeling of the extracellular matrix and of cell-matrix interactions, cell movement mediated by the actin cytoskeleton, and activation of focal adhesion...

متن کامل

Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice.

Deregulation of beta-catenin signaling is an important event in the genesis of several human malignancies including prostate cancer. We investigated the effects of apigenin, a naturally occurring plant flavone, on prostate carcinogenesis in TRAMP mice and further elucidated its mechanism of action. Oral intake of apigenin by gavage at doses of 20 and 50 microg/mouse/d, 6 days per week for 20 we...

متن کامل

Cancer Prevention Research The Chemopreventive Bioflavonoid Apigenin Inhibits Prostate Cancer Cell Motility through the Focal Adhesion Kinase/Src Signaling Mechanism

Prostate cancer mortality is primarily attributed to metastatic rather than primary, organ-confined disease. Acquiring a motile and invasive phenotype is an important step in development of tumors and ultimately metastasis. This step involves remodeling of the extracellular matrix and of cell-matrix interactions, cell movement mediated by the actin cytoskeleton, and activation of focal adhesion...

متن کامل

CXCL1/GROα increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-κB/HDAC1 epigenetic regulation.

Inflammatory tumor microenvironments play pivotal roles in the development of cancer. Inflammatory cytokines such as CXCL1/GROα exert cancer-promoting activities by increasing tumor angiogenesis. However, whether CXCL1/GROα also plays a role in the progression of prostate cancer, particularly in highly invasive castration-resistant prostate cancer (CRPC), has not been investigated. We explored ...

متن کامل

PI3K/Akt promotes feedforward mTORC2 activation through IKKα

The ser-thr Akt plays a critical role in the regulation of cell survival, cell growth and proliferation, as well as energy metabolism and is dysregulated in many cancers. The regulation of Akt activity depends on the phosphorylation at two sites: (i) Thr308 in the activation loop by phosphoinositide-dependent kinase-1 (PDK1) and (ii) Ser473 hydrophobic motif at the carboxyl terminus by a second...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015